diff --git a/src/build.js b/src/build.js
index 0361a7d..01ddd65 100644
--- a/src/build.js
+++ b/src/build.js
@@ -6,9 +6,11 @@
"../../node_modules/reveal.js/dist/reveal.css": "build/css/",
"../../node_modules/reveal.js/dist/theme/moon.css": "build/css/",
"../../node_modules/reveal.js/dist/reveal.js": "build/js/",
+ "../../node_modules/reveal.js/plugin/math/math.js": "build/js/",
"../../src/static/css/style.css": "build/css/",
"../../src/static/video/oscillator.mp4": "build/video",
"../../src/static/video/travelling.mp4": "build/video",
+ "../../src/static/video/photon.mp4": "build/video",
}
const buildFolder = "build"
diff --git a/src/build.js b/src/build.js
index 0361a7d..01ddd65 100644
--- a/src/build.js
+++ b/src/build.js
@@ -6,9 +6,11 @@
"../../node_modules/reveal.js/dist/reveal.css": "build/css/",
"../../node_modules/reveal.js/dist/theme/moon.css": "build/css/",
"../../node_modules/reveal.js/dist/reveal.js": "build/js/",
+ "../../node_modules/reveal.js/plugin/math/math.js": "build/js/",
"../../src/static/css/style.css": "build/css/",
"../../src/static/video/oscillator.mp4": "build/video",
"../../src/static/video/travelling.mp4": "build/video",
+ "../../src/static/video/photon.mp4": "build/video",
}
const buildFolder = "build"
diff --git a/src/presentation/main.md b/src/presentation/main.md
deleted file mode 100644
index f207914..0000000
--- a/src/presentation/main.md
+++ /dev/null
@@ -1,187 +0,0 @@
-%English
-## The Schrodinger Equation
-%German
-## Die Schr"odinger Gleichung
-
-----
-
-### Die harmonische Schwingung
-
-$$ a = \frac{d v}{dt} = \frac{F}{m} = -\frac{D*x}{m} = \frac{d^2 x}{d^2 t}$$
-;$$ x = A*\cos(\omega * t) \Leftrightarrow \frac{d^2 x}{d^2 t} = -\frac{D*x}{m} = -\omega^2 * x $$
-;$$\omega = \sqrt{\frac{D}{m}}$$
-
----
-
-### Die harmonische Schwingung
-
-$$ x = A*\cos(\sqrt{\frac{D}{m}} * t) $$
-;$$ v = \frac{d x}{d t} = \omega * A * \sin(\sqrt{\frac{D}{m}} * t)$$
-;$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$
-;$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$
-
----
-
-### Die harmonische Schwingung
-
-$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$
-
-$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$
-
-;$$ E_{ges} = E_{kin} + E_{Feder} = \frac{1}{2} * D * A^2 * $$
-$$(\sin^2(\omega * t) + \cos^2(\omega * t)) = \frac{1}{2} * D * A^2 $$
-
----
-
-### Die harmonische Schwingung
-
-$$ E_{ges} = \frac{1}{2} * D * A^2 $$
-
-;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} x \\ \frac{v}{\omega} \end{pmatrix} = \sqrt{\frac{D}{2}}*\begin{pmatrix}
-A*\cos(\omega * t) \\ \frac{\omega * A * \sin(\omega * t)}{\omega}\end{pmatrix}$$
-;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t)
-= \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$
-
----
-
-### Die harmonische Schwingung
-
-$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t)
-= \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$
-$$ \textcolor{red}{\Psi=\sqrt{\frac{D}{2}} * A * e^{i*\omega*t}}$$
-;$$|\Psi|^2 = E_{ges} = \frac{D*A^2}2 $$
-
----
-
-### Die harmonische Schwingung
-
-
-----
-
-### Wanderwelle
-
-
-
----
-
-### Wanderwelle
-
-
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-
----
-
-### Wanderwelle
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-;$$ k = \frac{2*\pi}{\lambda}, \omega = 2*\pi*f $$
-;$$ \lambda = \frac{h}{p} \Rightarrow k = \frac{2*\pi*p}{h} $$
-;$$ \omega = 2 * \pi * \frac{v}{\lambda} = \frac{2 * \pi * v * p}{h} $$
-
----
-
-### Wanderwelle
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-
-$$ k = \frac{2*\pi*p}{h}, \omega = \frac{2 * \pi * v * p}{h} $$
-;$$ \Psi = A*\circlearrowleft(\frac{2 * \pi * p}{h}*x - \frac{2 * \pi * v * p}{h} * t) $$
-;$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-;$$ E_{ges} = E_{kin} + E_{pot} = \frac{p^2}{2*m} + V $$
-;$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$
-
----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$
-;$$ \frac{\partial \Psi}{\partial x} = \circlearrowleft(90\degree) * \frac{2*\pi*p}{h} * \Psi \textcolor{red}{=
-\frac{i*p}{\hbar} * \Psi} $$
-;$$ p = \circlearrowleft(-90\degree) * \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial x} \textcolor{red}{=
--i * \hbar * \frac{\partial \Psi}{\partial x}} $$
-
----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ E_{ges} *\Psi = \circlearrowleft(180\degree) * \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *
-\Psi $$
-;
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-;$$ E_{ph} = h*f = \frac{h*v}{\lambda} = \frac{h*v*p}{h} = v*p $$
-;$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$
-
-;$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$
-;$$ E_{ges} *\Psi = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} \textcolor{red}{ =
-i*\hbar*\frac{\partial \Psi}{\partial t}}$$
-
----
-
-### Die Schr"odinger Gleichung
-
-
- $$ \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} =- \frac{h^2}{8*m*\pi^2} *
- \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi $$
-
-
- $$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2
- x} + V * \Psi } $$
-
diff --git a/src/build.js b/src/build.js
index 0361a7d..01ddd65 100644
--- a/src/build.js
+++ b/src/build.js
@@ -6,9 +6,11 @@
"../../node_modules/reveal.js/dist/reveal.css": "build/css/",
"../../node_modules/reveal.js/dist/theme/moon.css": "build/css/",
"../../node_modules/reveal.js/dist/reveal.js": "build/js/",
+ "../../node_modules/reveal.js/plugin/math/math.js": "build/js/",
"../../src/static/css/style.css": "build/css/",
"../../src/static/video/oscillator.mp4": "build/video",
"../../src/static/video/travelling.mp4": "build/video",
+ "../../src/static/video/photon.mp4": "build/video",
}
const buildFolder = "build"
diff --git a/src/presentation/main.md b/src/presentation/main.md
deleted file mode 100644
index f207914..0000000
--- a/src/presentation/main.md
+++ /dev/null
@@ -1,187 +0,0 @@
-%English
-## The Schrodinger Equation
-%German
-## Die Schr"odinger Gleichung
-
-----
-
-### Die harmonische Schwingung
-
-$$ a = \frac{d v}{dt} = \frac{F}{m} = -\frac{D*x}{m} = \frac{d^2 x}{d^2 t}$$
-;$$ x = A*\cos(\omega * t) \Leftrightarrow \frac{d^2 x}{d^2 t} = -\frac{D*x}{m} = -\omega^2 * x $$
-;$$\omega = \sqrt{\frac{D}{m}}$$
-
----
-
-### Die harmonische Schwingung
-
-$$ x = A*\cos(\sqrt{\frac{D}{m}} * t) $$
-;$$ v = \frac{d x}{d t} = \omega * A * \sin(\sqrt{\frac{D}{m}} * t)$$
-;$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$
-;$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$
-
----
-
-### Die harmonische Schwingung
-
-$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$
-
-$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$
-
-;$$ E_{ges} = E_{kin} + E_{Feder} = \frac{1}{2} * D * A^2 * $$
-$$(\sin^2(\omega * t) + \cos^2(\omega * t)) = \frac{1}{2} * D * A^2 $$
-
----
-
-### Die harmonische Schwingung
-
-$$ E_{ges} = \frac{1}{2} * D * A^2 $$
-
-;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} x \\ \frac{v}{\omega} \end{pmatrix} = \sqrt{\frac{D}{2}}*\begin{pmatrix}
-A*\cos(\omega * t) \\ \frac{\omega * A * \sin(\omega * t)}{\omega}\end{pmatrix}$$
-;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t)
-= \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$
-
----
-
-### Die harmonische Schwingung
-
-$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t)
-= \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$
-$$ \textcolor{red}{\Psi=\sqrt{\frac{D}{2}} * A * e^{i*\omega*t}}$$
-;$$|\Psi|^2 = E_{ges} = \frac{D*A^2}2 $$
-
----
-
-### Die harmonische Schwingung
-
-
-----
-
-### Wanderwelle
-
-
-
----
-
-### Wanderwelle
-
-
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-
----
-
-### Wanderwelle
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-;$$ k = \frac{2*\pi}{\lambda}, \omega = 2*\pi*f $$
-;$$ \lambda = \frac{h}{p} \Rightarrow k = \frac{2*\pi*p}{h} $$
-;$$ \omega = 2 * \pi * \frac{v}{\lambda} = \frac{2 * \pi * v * p}{h} $$
-
----
-
-### Wanderwelle
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-
-$$ k = \frac{2*\pi*p}{h}, \omega = \frac{2 * \pi * v * p}{h} $$
-;$$ \Psi = A*\circlearrowleft(\frac{2 * \pi * p}{h}*x - \frac{2 * \pi * v * p}{h} * t) $$
-;$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-;$$ E_{ges} = E_{kin} + E_{pot} = \frac{p^2}{2*m} + V $$
-;$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$
-
----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$
-;$$ \frac{\partial \Psi}{\partial x} = \circlearrowleft(90\degree) * \frac{2*\pi*p}{h} * \Psi \textcolor{red}{=
-\frac{i*p}{\hbar} * \Psi} $$
-;$$ p = \circlearrowleft(-90\degree) * \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial x} \textcolor{red}{=
--i * \hbar * \frac{\partial \Psi}{\partial x}} $$
-
----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ E_{ges} *\Psi = \circlearrowleft(180\degree) * \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *
-\Psi $$
-;
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-;$$ E_{ph} = h*f = \frac{h*v}{\lambda} = \frac{h*v*p}{h} = v*p $$
-;$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$
-
-;$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$
-;$$ E_{ges} *\Psi = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} \textcolor{red}{ =
-i*\hbar*\frac{\partial \Psi}{\partial t}}$$
-
----
-
-### Die Schr"odinger Gleichung
-
-
- $$ \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} =- \frac{h^2}{8*m*\pi^2} *
- \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi $$
-
-
- $$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2
- x} + V * \Psi } $$
-
diff --git a/src/python/photon.py b/src/python/photon.py
new file mode 100644
index 0000000..eb6a715
--- /dev/null
+++ b/src/python/photon.py
@@ -0,0 +1,28 @@
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib.animation as animation
+
+outputFolder = "src/static/video/"
+
+totalTime = 12
+framerate = 20
+
+psi = lambda x,t,n: np.sin(n*np.pi*x) * np.exp(-0.25j*n**2*np.pi*t)
+
+wave = lambda x, t: np.abs(psi(x, t, 1) + psi(x, t, 2))**2
+
+fig, ax = plt.subplots()
+
+x = np.linspace(0, 1, 100)
+line, = ax.plot(x, wave(x, 0))
+
+def animate(i):
+ t = i/framerate
+ line.set_ydata(wave(x, t))
+ return line,
+
+
+ani = animation.FuncAnimation(
+ fig, animate, interval=1000/framerate, blit=True, save_count = framerate * totalTime)
+ani.save(f"{outputFolder}photon.mp4")
+plt.show()
diff --git a/src/build.js b/src/build.js
index 0361a7d..01ddd65 100644
--- a/src/build.js
+++ b/src/build.js
@@ -6,9 +6,11 @@
"../../node_modules/reveal.js/dist/reveal.css": "build/css/",
"../../node_modules/reveal.js/dist/theme/moon.css": "build/css/",
"../../node_modules/reveal.js/dist/reveal.js": "build/js/",
+ "../../node_modules/reveal.js/plugin/math/math.js": "build/js/",
"../../src/static/css/style.css": "build/css/",
"../../src/static/video/oscillator.mp4": "build/video",
"../../src/static/video/travelling.mp4": "build/video",
+ "../../src/static/video/photon.mp4": "build/video",
}
const buildFolder = "build"
diff --git a/src/presentation/main.md b/src/presentation/main.md
deleted file mode 100644
index f207914..0000000
--- a/src/presentation/main.md
+++ /dev/null
@@ -1,187 +0,0 @@
-%English
-## The Schrodinger Equation
-%German
-## Die Schr"odinger Gleichung
-
-----
-
-### Die harmonische Schwingung
-
-$$ a = \frac{d v}{dt} = \frac{F}{m} = -\frac{D*x}{m} = \frac{d^2 x}{d^2 t}$$
-;$$ x = A*\cos(\omega * t) \Leftrightarrow \frac{d^2 x}{d^2 t} = -\frac{D*x}{m} = -\omega^2 * x $$
-;$$\omega = \sqrt{\frac{D}{m}}$$
-
----
-
-### Die harmonische Schwingung
-
-$$ x = A*\cos(\sqrt{\frac{D}{m}} * t) $$
-;$$ v = \frac{d x}{d t} = \omega * A * \sin(\sqrt{\frac{D}{m}} * t)$$
-;$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$
-;$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$
-
----
-
-### Die harmonische Schwingung
-
-$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$
-
-$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$
-
-;$$ E_{ges} = E_{kin} + E_{Feder} = \frac{1}{2} * D * A^2 * $$
-$$(\sin^2(\omega * t) + \cos^2(\omega * t)) = \frac{1}{2} * D * A^2 $$
-
----
-
-### Die harmonische Schwingung
-
-$$ E_{ges} = \frac{1}{2} * D * A^2 $$
-
-;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} x \\ \frac{v}{\omega} \end{pmatrix} = \sqrt{\frac{D}{2}}*\begin{pmatrix}
-A*\cos(\omega * t) \\ \frac{\omega * A * \sin(\omega * t)}{\omega}\end{pmatrix}$$
-;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t)
-= \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$
-
----
-
-### Die harmonische Schwingung
-
-$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t)
-= \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$
-$$ \textcolor{red}{\Psi=\sqrt{\frac{D}{2}} * A * e^{i*\omega*t}}$$
-;$$|\Psi|^2 = E_{ges} = \frac{D*A^2}2 $$
-
----
-
-### Die harmonische Schwingung
-
-
-----
-
-### Wanderwelle
-
-
-
----
-
-### Wanderwelle
-
-
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-
----
-
-### Wanderwelle
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-;$$ k = \frac{2*\pi}{\lambda}, \omega = 2*\pi*f $$
-;$$ \lambda = \frac{h}{p} \Rightarrow k = \frac{2*\pi*p}{h} $$
-;$$ \omega = 2 * \pi * \frac{v}{\lambda} = \frac{2 * \pi * v * p}{h} $$
-
----
-
-### Wanderwelle
-
-$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$
-
-$$ k = \frac{2*\pi*p}{h}, \omega = \frac{2 * \pi * v * p}{h} $$
-;$$ \Psi = A*\circlearrowleft(\frac{2 * \pi * p}{h}*x - \frac{2 * \pi * v * p}{h} * t) $$
-;$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-;$$ E_{ges} = E_{kin} + E_{pot} = \frac{p^2}{2*m} + V $$
-;$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$
-
----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$
-;$$ \frac{\partial \Psi}{\partial x} = \circlearrowleft(90\degree) * \frac{2*\pi*p}{h} * \Psi \textcolor{red}{=
-\frac{i*p}{\hbar} * \Psi} $$
-;$$ p = \circlearrowleft(-90\degree) * \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial x} \textcolor{red}{=
--i * \hbar * \frac{\partial \Psi}{\partial x}} $$
-
----
-
-### Energieerhaltungssatz
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ E_{ges} *\Psi = \circlearrowleft(180\degree) * \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *
-\Psi $$
-;
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-;$$ E_{ph} = h*f = \frac{h*v}{\lambda} = \frac{h*v*p}{h} = v*p $$
-;$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$
-
-;$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$
-
----
-
-### Energieerhaltungssatz
-
-
- $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi
- \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$
-
-
-$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$
-
-$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$
-;$$ E_{ges} *\Psi = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} \textcolor{red}{ =
-i*\hbar*\frac{\partial \Psi}{\partial t}}$$
-
----
-
-### Die Schr"odinger Gleichung
-
-
- $$ \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} =- \frac{h^2}{8*m*\pi^2} *
- \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi $$
-
-
- $$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2
- x} + V * \Psi } $$
-
diff --git a/src/python/photon.py b/src/python/photon.py
new file mode 100644
index 0000000..eb6a715
--- /dev/null
+++ b/src/python/photon.py
@@ -0,0 +1,28 @@
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib.animation as animation
+
+outputFolder = "src/static/video/"
+
+totalTime = 12
+framerate = 20
+
+psi = lambda x,t,n: np.sin(n*np.pi*x) * np.exp(-0.25j*n**2*np.pi*t)
+
+wave = lambda x, t: np.abs(psi(x, t, 1) + psi(x, t, 2))**2
+
+fig, ax = plt.subplots()
+
+x = np.linspace(0, 1, 100)
+line, = ax.plot(x, wave(x, 0))
+
+def animate(i):
+ t = i/framerate
+ line.set_ydata(wave(x, t))
+ return line,
+
+
+ani = animation.FuncAnimation(
+ fig, animate, interval=1000/framerate, blit=True, save_count = framerate * totalTime)
+ani.save(f"{outputFolder}photon.mp4")
+plt.show()
diff --git a/src/template_presentation.html b/src/template_presentation.html
index f0a34c0..76d0c21 100644
--- a/src/template_presentation.html
+++ b/src/template_presentation.html
@@ -10,17 +10,12 @@
-
-
-
+