diff --git a/src/presentation/main.md b/src/presentation/main.md new file mode 100644 index 0000000..9a7641a --- /dev/null +++ b/src/presentation/main.md @@ -0,0 +1,274 @@ +%English +## The Schrodinger Equation +%German +## Die Schr"odinger Gleichung + +---- + +### Die harmonische Schwingung + +$$ a = \frac{d v}{dt} = \frac{F}{m} = -\frac{D*x}{m} = \frac{d^2 x}{d^2 t}$$ +;$$ x = A*\cos(\omega * t) \Leftrightarrow \frac{d^2 x}{d^2 t} = -\frac{D*x}{m} = -\omega^2 * x $$ +;$$\omega = \sqrt{\frac{D}{m}}$$ + +--- + +### Die harmonische Schwingung + +$$ x = A*\cos(\sqrt{\frac{D}{m}} * t) $$ +;$$ v = \frac{d x}{d t} = \omega * A * \sin(\sqrt{\frac{D}{m}} * t)$$ +;$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$ +;$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$ + +--- + +### Die harmonische Schwingung + +$$ E_{kin} = \frac{1}{2} * m * v^2 = \frac{1}{2} * D * A^2 * \sin^2(\omega * t)$$ + +$$ E_{Feder} = \frac{1}{2} * D * x^2 = \frac{1}{2} * D * A^2 * \cos^2(\omega * t)$$ + +;$$ E_{ges} = E_{kin} + E_{Feder} = \frac{1}{2} * D * A^2 * $$ +$$(\sin^2(\omega * t) + \cos^2(\omega * t)) = \frac{1}{2} * D * A^2 $$ + +--- + +### Die harmonische Schwingung + +$$ E_{ges} = \frac{1}{2} * D * A^2 $$ + +;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} x \\ \frac{v}{\omega} \end{pmatrix} = \sqrt{\frac{D}{2}}*\begin{pmatrix} +A*\cos(\omega * t) \\ \frac{\omega * A * \sin(\omega * t)}{\omega}\end{pmatrix}$$ +;$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t) += \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$ + +--- + +### Die harmonische Schwingung + +$$ \Psi = \sqrt{\frac{D}{2}}*\begin{pmatrix} A \\ A \end{pmatrix} \odot \circlearrowleft(\omega * t) += \sqrt{\frac{D}{2}}*A *\circlearrowleft(\omega * t) $$ +$$ \textcolor{red}{\Psi=\sqrt{\frac{D}{2}} * A * e^{i*\omega*t}}$$ +;$$|\Psi|^2 = E_{ges} = \frac{D*A^2}2 $$ + +--- + +### Die harmonische Schwingung + + +---- + +### Wanderwelle + + + +--- + +### Wanderwelle + + + +$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$ + +--- + +### Wanderwelle + +$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$ +;$$ k = \frac{2*\pi}{\lambda}, \omega = 2*\pi*f $$ +;$$ \lambda = \frac{h}{p} \Rightarrow k = \frac{2*\pi*p}{h} $$ +;$$ \omega = 2 * \pi * \frac{v}{\lambda} = \frac{2 * \pi * v * p}{h} $$ + +--- + +### Wanderwelle + +$$ \Psi = A*\circlearrowleft(k*x - \omega * t) \textcolor{red}{= A*e^{i(k*x-\omega*t)}}$$ + +$$ k = \frac{2*\pi*p}{h}, \omega = \frac{2 * \pi * v * p}{h} $$ +;$$ \Psi = A*\circlearrowleft(\frac{2 * \pi * p}{h}*x - \frac{2 * \pi * v * p}{h} * t) $$ +;$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ + +---- + +### Energieerhaltungssatz + +$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ +;$$ E_{ges} = E_{kin} + E_{pot} = \frac{p^2}{2*m} + V $$ +;$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$ + +--- + +### Energieerhaltungssatz + +$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ + +$$ E_{ges} *\Psi = \frac{p^2}{2*m} * \Psi + V * \Psi $$ +;$$ \frac{\partial \Psi}{\partial x} = \circlearrowleft(90\degree) * \frac{2*\pi*p}{h} * \Psi \textcolor{red}{= +\frac{i*p}{\hbar} * \Psi} $$ +;$$ p = \circlearrowleft(-90\degree) * \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial x} \textcolor{red}{= +-i * \hbar * \frac{\partial \Psi}{\partial x}} $$ + +--- + +### Energieerhaltungssatz + +$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ + +$$ E_{ges} *\Psi = \circlearrowleft(180\degree) * \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V * +\Psi $$ +; +
+ $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi + \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$ +
+ +--- + +### Energieerhaltungssatz + +
+ $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi + \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$ +
+ +$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ + +;$$ E_{ph} = h*f = \frac{h*v}{\lambda} = \frac{h*v*p}{h} = v*p $$ +;$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$ + +--- + +### Energieerhaltungssatz + +
+ $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi + \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$ +
+ +$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ + +$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) * \frac{2*\pi*p * v}{h} * \Psi$$ + +;$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$ + +--- + +### Energieerhaltungssatz + +
+ $$ E_{ges} *\Psi =- \frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi + \textcolor{red}{=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 x} + V * \Psi } $$ +
+ +$$ \Psi = A*\circlearrowleft(\frac{2*\pi*p}{h}*(x - v*t)) \textcolor{red}{= A*e^{\frac{i*p}{\hbar}*(x-v*t)}} $$ + +$$ p*v*\Psi = -\frac{\partial \Psi}{\partial t} * \frac{h}{2*\pi*\circlearrowleft(90\degree)}$$ +;$$ E_{ges} *\Psi = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} \textcolor{red}{ = +i*\hbar*\frac{\partial \Psi}{\partial t}}$$ + +---- + +### Die Schr"odinger Gleichung + +
+ $$ \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} =- \frac{h^2}{8*m*\pi^2} * + \frac{\partial^2 \Psi}{\partial^2 x} + V *\Psi $$ +
+
+ $$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2*m} * \frac{\partial^2 \Psi}{\partial^2 + x} + V * \Psi } $$ +
+ +---- + +### Teilchen im Potentialtopf + + +$$ V = 0 \forall x \in [0; l], V = \infty \forall x \notin [0; l] $$ + +;$$ \Psi = 0 \forall x \notin [0, l], \Psi \in \mathbb{C} \forall x \in [0, l] $$ +;$$ \Psi = \Psi_x * \Psi_t $$ + +--- + +### Teilchen im Potentialtopf + +$$ \Psi = \Psi_x * \Psi_t $$ + +;$$E*\Psi = -\frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi}{\partial^2 x}$$ +;$$E*\Psi_t * \Psi_x = -\frac{h^2}{8*m*\pi^2} *\Psi_t* \frac{\partial^2 \Psi_x}{\partial^2 x}$$ +;$$E* \Psi_x = -\frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi_x}{\partial^2 x}$$ + +--- + +### Teilchen im Potentialtopf + +$$ \Psi = A*\sin(k*x + \alpha_0) * \Psi_t $$ + +$$E * \Psi_x = -\frac{h^2}{8*m*\pi^2} * \frac{\partial^2 \Psi_x}{\partial^2 x}$$ +;$$E * \Psi_x = \frac{h^2}{8*m*\pi^2} * k^2 \Psi_x$$ +;$$E = \frac{h^2*k^2}{8*m*\pi^2}$$ + +--- + +### Teilchen im Potentialtopf + +$$ \Psi = A*\sin(k*x + \alpha_0) * \Psi_t $$ + +;$$ \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} = E*\Psi = +\frac{h^2*k^2*\Psi_t}{8*m*\pi^2} +\textcolor{red}{ = i*\hbar*\frac{\partial \Psi}{\partial t}} $$ +;$$ \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi_t}{\partial t} = E*\Psi_t = +\frac{h^2*k^2*\Psi_t}{8*m*\pi^2}\textcolor{red}{ = i*\hbar*\frac{\partial \Psi_t}{\partial t}} $$ + +;$$ \Psi_t = \circlearrowleft(\omega * t) \textcolor{red}{=e^{i*\omega*t}} \Rightarrow \omega = -\frac{h*k^2}{4*\pi*m} +$$ + +--- + +### Teilchen im Potentialtopf + +$$ \Psi = A*\sin(k*x + \alpha_0) * \circlearrowleft(-\frac{h*k^2}{4*\pi*m} * t)$$ +;$$ \Psi(0) = 0 \Rightarrow \alpha_0 = 0 $$ +;$$ \Psi(l) = 0 = A*\sin(k*x*l) \Rightarrow k = \frac{n*\pi}{l} \forall n\in \mathbb{N} $$ +;$$ E_n = \frac{h^2*n^2}{8*m*l^2}, \Psi = A*\sin(\frac{n*\pi*x}{l}) * \circlearrowleft(-\frac{h*k^2}{4*\pi*m} * t)$$ +$$\textcolor{red}{\Psi=A*\sin(\frac{n*\pi*x}{l}) * e^{-\frac{i*\hbar*k^2*t}{2*m}}} $$ + +---- + +### "Uberlagerung von Zust"anden + +$$ \Psi = \Psi_1 + \Psi_2, \rho = |\Psi|^2 = |\Psi_1 + \Psi_2|^2 $$ +;$ |\Psi|^2 = (\Psi_{1x}+\Psi_{2x})^2 + (\Psi_{1y} + \Psi_{2y})^2 $ +;$ |\Psi|^2 = A^2((\sin(k_1*x)*\cos(\omega_1*t) + +\sin(k_2*x)*\cos(\omega_2*t))^2 + +((\sin(k_1*x)*\sin(\omega_1*t) + +\sin(k_2*x)*\sin(\omega_2*t))^2$ + +--- + +### "Uberlagerung von Zust"anden + +$$ |\Psi|^2 = A^2*(\sin^2(k_1*x) + \sin^2(k_2*x) + (2*\sin(k_1*x) * sin(k_2*x) * \cos((\omega_1-\omega_2)*t)$$ +; + + +--- + +### "Uberlagerung von Zust"anden + +$$ |\Psi|^2 = A^2*(\sin^2(k_1*x) + \sin^2(k_2*x) + (2*\sin(k_1*x) * sin(k_2*x) * \cos((\omega_1-\omega_2)*t)$$ + +;$$\omega = \omega_1-\omega_2, f = \frac{\omega}{2*\pi} = \frac{\omega_1 - \omega_2}{2*\pi}$$ +;$$ f = \frac{h}{2*\pi*4*\pi*m} *(k_1^2 - k_2^2) $$ +;$$ E_{ph} = h*f = \frac{h^2}{8*\pi^2*m} *(k_1^2 - k_2^2) $$ +;$$ E_{ph} = E_1 - E_2 $$