diff --git a/src/presentation/main.md b/src/presentation/main.md index d7d71e2..06c7f6f 100644 --- a/src/presentation/main.md +++ b/src/presentation/main.md @@ -290,45 +290,45 @@ ;$$ \Psi = \sum_{i=-\infty}^{\infty} a_n *\circlearrowleft(k_n*x) \textcolor{red}{=\sum_{n=-\infty}^{\infty} a_n* e^{i*k_n*x}}$$ -;$$ \Psi = \int_{-\infty}^{\infty} \psi* \circlearrowleft(k*x)* dk \textcolor{red}{=\int_{-\infty}^{\infty} \psi* +;$$ \Psi = \int_{-\infty}^{\infty} \phi* \circlearrowleft(k*x)* dk \textcolor{red}{=\int_{-\infty}^{\infty} \phi* e^{i*k*x}*dk}$$ ;$$ \Psi = \int_{-\infty}^{\infty} \circlearrowleft(k*x)*dk * \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx $$ -;$$ \psi = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi* +;$$ \phi = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi* e^{-i*k*x}*dk}$$ --- ### Impulsraum -$$ \psi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} +$$ \phi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi*e^{-i*k*x}*dk}$$ -$$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +;$$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t} = \frac{p^2}{2*m} *\Psi $$ ;$$\textcolor{red}{F(i*\hbar*\frac{\partial \Psi}{\partial t})} = F(\circlearrowleft(90\degree)* \frac{h}{2*\pi} * \frac{\partial \Psi}{\partial t}) = F(\frac{p^2}{2*m} *\Psi) $$ -;$$\textcolor{red}{i*\hbar*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * -\frac{\partial \psi}{\partial t} = \frac{p^2}{2*m} *\psi $$ +;$$\textcolor{red}{i*\hbar*\frac{\partial \phi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \phi}{\partial t} = \frac{p^2}{2*m} *\phi $$ -;$$\textcolor{red}{i*\hbar*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * -\frac{\partial \psi}{\partial t} = \frac{(\frac{h*k}{2*\pi})^2}{2*m} *\psi $$ +;$$\textcolor{red}{i*\hbar*\frac{\partial \phi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \phi}{\partial t} = \frac{(\frac{h*k}{2*\pi})^2}{2*m} *\phi $$ -;$$\textcolor{red}{i*\hbar*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * -\frac{\partial \psi}{\partial t} = \frac{h^2*k^2}{8*\pi^2*m} *\psi $$ +;$$\textcolor{red}{i*\hbar*\frac{\partial \phi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \phi}{\partial t} = \frac{h^2*k^2}{8*\pi^2*m} *\phi $$ --- ### Impulsraum -$$ \psi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} +$$ \phi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi*e^{-i*k*x}*dk}$$ -$$\textcolor{red}{i*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* -\frac{\partial \psi}{\partial t} = \frac{h*k^2}{4*\pi*m} *\psi $$ +$$\textcolor{red}{i*\frac{\partial \phi}{\partial t}} = \circlearrowleft(90\degree)* +\frac{\partial \phi}{\partial t} = \frac{h*k^2}{4*\pi*m} *\phi $$ -;$$\psi = \circlearrowleft(\omega * t) * \psi_0 = \textcolor{red}{e^{i*\omega*t}*\psi_0}$$ +;$$\phi = \circlearrowleft(\omega * t) * \phi_0 = \textcolor{red}{e^{i*\omega*t}*\phi_0}$$ ;$$\omega = -\frac{h*k^2}{4*\pi*m}$$ ---- @@ -351,18 +351,18 @@ -\circlearrowleft(90\degree) * 2*b_{x0} * \frac{\partial}{\partial k}F(\Psi_0) \textcolor{red}{=-2i*b_{x0}*\frac{\partial}{\partial k}F(\Psi_0)}$$ -;$$ k * \psi_0 = -2*b_{x0} * \frac{\partial \psi_0}{\partial k}$$ -;$$ \frac{\partial \psi_0}{\partial k} = -\frac{k}{2*b_{x0}}$$ -;$$ \psi_0 = A_{k} *e^{-b_{k}*k^2} \Rightarrow b_k = \frac{1}{4*b_{x0}}$$ +;$$ k * \phi_0 = -2*b_{x0} * \frac{\partial \phi_0}{\partial k}$$ +;$$ \frac{\partial \phi_0}{\partial k} = -\frac{k * \phi_0}{2*b_{x0}}$$ +;$$ \phi_0 = A_{k} *e^{-b_{k}*k^2} \Rightarrow b_k = \frac{1}{4*b_{x0}}$$ --- ### Ein lokalisiertes Teilchen -$$ \psi_0 = A_{k} *e^{-\frac{k^2}{4*b_{x0}}}$$ -;$$ |\psi_0|^2 = A_{p}^2 * e^{\frac{p^2}{2*\sigma_p^2}} $$ -;$$ \psi_0 = A_{p} * e^{-\frac{p^2}{4*\sigma_p^2}} $$ -;$$ \psi_0 = A_{k} * e^{-\frac{h^2*k^2}{4*4*\pi^2*\sigma_p^2}} = A_{k} *e^{-\frac{k^2}{4*b_{x0}}}$$ +$$ \phi_0 = A_{k} *e^{-\frac{k^2}{4*b_{x0}}}$$ +;$$ |\phi_0|^2 = A_{p}^2 * e^{\frac{p^2}{2*\sigma_p^2}} $$ +;$$ \phi_0 = A_{p} * e^{-\frac{p^2}{4*\sigma_p^2}} $$ +;$$ \phi_0 = A_{k} * e^{-\frac{h^2*k^2}{4*4*\pi^2*\sigma_p^2}} = A_{k} *e^{-\frac{k^2}{4*b_{x0}}}$$ ;$$ \frac{h^2}{4*4*\pi^2*\sigma_p^2} = \frac{1}{4*b_{x0}}$$ ;$$ \frac{4*\pi^2*\sigma_p^2}{h^2} = b_{x0}$$ @@ -379,24 +379,24 @@ ### Ein lokalisiertes Teilchen -$$\psi = \circlearrowleft(\omega * t) * \psi_0 = \textcolor{red}{e^{i*\omega*t}*\psi_0}$$ +$$\phi = \circlearrowleft(\omega * t) * \phi_0 = \textcolor{red}{e^{i*\omega*t}*\phi_0}$$ -;$$ \psi = A_{k} *e^{-\frac{k^2}{4*b_{x0}}} * \circlearrowleft(-\frac{h*k^2}{4*\pi*m} * t) = +;$$ \phi = A_{k} *e^{-\frac{k^2}{4*b_{x0}}} * \circlearrowleft(-\frac{h*k^2}{4*\pi*m} * t) = \textcolor{red}{A_{k} *e^{-\frac{k^2}{4*b_{x0}}}*e^{-\frac{i*h*k^2}{4*\pi*m} *t}}$$ -;$$ \psi = A_{k} * e^{-\frac{k^2}{4*b_{x0}} + \ln(\circlearrowleft(-\frac{h*k^2*t}{4*\pi*m}))}$$ -;$$ \psi = A_{k} * e^{-\frac{k^2}{4*b_{x0}} -\frac{h*k^2*t}{4*\pi*m} \circlearrowleft(90\degree)}$$ -;$$ \psi = A_{k} * e^{-k^2(\frac{1}{4*b_{x0}} + \frac{h*t}{4*\pi*m} \circlearrowleft(90\degree))}\textcolor{red}{ = +;$$ \phi = A_{k} * e^{-\frac{k^2}{4*b_{x0}} + \ln(\circlearrowleft(-\frac{h*k^2*t}{4*\pi*m}))}$$ +;$$ \phi = A_{k} * e^{-\frac{k^2}{4*b_{x0}} -\frac{h*k^2*t}{4*\pi*m} \circlearrowleft(90\degree)}$$ +;$$ \phi = A_{k} * e^{-k^2(\frac{1}{4*b_{x0}} + \frac{h*t}{4*\pi*m} \circlearrowleft(90\degree))}\textcolor{red}{ = A_{k}*e^{-k^2*(\frac{1}{4*b_{x0}}+\frac{i*\hbar*t}{2*m})}}$$ -;$$\psi = A_{k} * e^{-c*k^2}, c = +;$$\phi = A_{k} * e^{-c*k^2}, c = \sigma_x^2+\frac{h*t}{4*\pi*m}*\circlearrowleft(90\degree)\textcolor{red}{=\sigma_x^2+\frac{i\hbar*t}{2*m}} $$ --- ### Ein lokalisiertes Teilchen -$$\psi = A_{k} * e^{-c*k^2} $$ +$$\phi = A_{k} * e^{-c*k^2} $$ $$ \Psi = A * e^{-\frac{x^2}{4*c}} = A*e^{-\frac{x^2}{4*\sigma_x^2+\frac{h*t}{\pi*m}*\circlearrowleft(90\degree)}}\textcolor{red}{=A*e^{-\frac{x^2}{4*\sigma_x^2+\frac{2i*\hbar*t}{m}}}}$$