diff --git a/src/article/main.md b/src/article/main.md index bda6218..25e813d 100644 --- a/src/article/main.md +++ b/src/article/main.md @@ -480,7 +480,8 @@ %common $$ \sigma = \frac{d}{2} $$ $$ \Psi = \frac{A*\sigma}{\sqrt{\sigma^2 + \frac{i*2*\hbar}{m}*t}} * -(e^{-\frac{(x+d)^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}} + e^{-\frac{(x-d)^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}}) $$ +(e^{-\frac{(x+\frac{d}{2})^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}} + +e^{-\frac{(x-\frac{d}{2})^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}}) $$ %English For simplicity, all factors in the front will be disregarded. Two complex wave interfere constructively, whenever their @@ -492,28 +493,28 @@ %common $$ n \in \mathbb{Z} $$ -$$ \Im(-\frac{(x+d)^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}) = \Im(-\frac{(x-d)^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}) + +$$ \Im(-\frac{(x+\frac{d}{2})^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}) = +\Im(-\frac{(x-\frac{d}{2})^2}{\sigma^2+\frac{i*\hbar*2}{m}*t}) + 2*\pi*n $$ -$$ \Im(-\frac{(x+d)^2 * (\sigma^2-\frac{i*\hbar*2}{m}*t)}{(\sigma^2+\frac{i*\hbar*2}{m}*t) * +$$ \Im(-\frac{(x+\frac{d}{2})^2 * (\sigma^2-\frac{i*\hbar*2}{m}*t)}{(\sigma^2+\frac{i*\hbar*2}{m}*t) * (\sigma^2-\frac{i*\hbar*2}{m}*t)}) = -\Im(-\frac{(x+d)^2 * (\sigma^2-\frac{i*\hbar*2}{m}*t)}{(\sigma^2+\frac{i*\hbar*2}{m}*t) * +\Im(-\frac{(x+\frac{d}{2})^2 * (\sigma^2-\frac{i*\hbar*2}{m}*t)}{(\sigma^2+\frac{i*\hbar*2}{m}*t) * (\sigma^2-\frac{i*\hbar*2}{m}*t)}) + 2*\pi*n $$ -$$ \frac{(x+d)^2 * \frac{2*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = -\frac{(x-d)^2 * \frac{2*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) + +$$ \frac{(x+\frac{d}{2})^2 * \frac{2*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = +\frac{(x-\frac{d}{2})^2 * \frac{2*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) + +2*\pi*n $$ + +$$ \frac{\frac{d*x*2*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = +\frac{-\frac{d*x*2*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = 2*\pi*n $$ $$ \frac{\frac{4*d*x*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = -\frac{-\frac{4*d*x*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = 2*\pi*n $$ -$$ \frac{\frac{8*d*x*\hbar*t}{m}}{\sigma^4+\frac{4*\hbar^2*t^2}{m^2}}) = -2*\pi*n $$ - -$$ x_{max} = \frac{2*\pi*n*m * (\sigma^4+\frac{4*\hbar^2*t^2}{m^2})}{8*d*\hbar*t} = \frac{n*m * -(\sigma^4+\frac{4*\hbar^2*t^2}{m^2})}{8*d*h*t} $$ +$$ x_{max} = \frac{2*\pi*n*m * (\sigma^4+\frac{4*\hbar^2*t^2}{m^2})}{4*d*\hbar*t}$$ %English For big $t$, we get evenly spaced maxima in the wave function, corresponding to bright spots on a real-world experiment. @@ -523,4 +524,18 @@ Punkten auf einem Schirm entsprechen. Auch gibt es Minima, jeweils bei %common -$$ x_{min} = \frac{(n-0.5)*m * (\sigma^4+\frac{4*\hbar^2*t^2}{m^2})}{8*d*h*t} $$ +$$ x_{min} = \frac{2*\pi*(n-0.5)*m * (\sigma^4+\frac{4*\hbar^2*t^2}{m^2})}{4*d*\hbar*t}$$ + +%English +Assuming $\sigma^4 \ll \frac{4*\hbar^2*t^2}{m^2}$, the first part of the numerator vanishes. +%German +Angenommen $\sigma^4 \ll \frac{4*\hbar^2*t^2}{m^2}$ verschwindet der erste Teil des Z"ahlers. + +%common +$$ x_{max} = \frac{2*\pi*n*m * \frac{4*\hbar^2*t^2}{m^2}}{4*d*\hbar*t} = \frac{2*\pi*n*m * +4*\hbar^2*t^2}{4*d*\hbar*t*m^2} = \frac{n*h*t}{d*m} = \frac{n*h*s}{d*m*v} = \frac{n*\lambda*s}{d}$$ + +%English +This relation is equivalent to the traditional formulation for the double slit experiment. +%German +Diese Formulierung ist "aquivalent zur traditionellen Formulierung des Doppelspaltexperiments.