diff --git a/src/presentation/main.md b/src/presentation/main.md index f0cfa6f..0360462 100644 --- a/src/presentation/main.md +++ b/src/presentation/main.md @@ -308,11 +308,47 @@ $$ \Psi = \int_{-\infty}^{\infty} \psi* \circlearrowleft(k*x)* dk \textcolor{red}{=\int_{-\infty}^{\infty} \psi* e^{i*k*x}*dk}$$ -$$ \psi = \int \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi* -e^{-i*k*x}*dk}$$ + +$$ \psi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} +\Psi*e^{-i*k*x}*dk}$$ $$ \frac{\partial \psi}{\partial k} = \int \frac{\partial}{\partial k}\circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi*\frac{\partial}{\partial k}e^{-i*k*x}*dk} $$ ;$$ \frac{\partial \psi}{\partial k} = \int x*\circlearrowleft(-90\degree) * \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} -i*x*\Psi*e^{-i*k*x}*dk} $$ ;$$ \frac{\partial \psi}{\partial k} = \circlearrowleft(-90\degree)*F^{-1}(\Psi*k)\textcolor{red}{=-i*F^{-1}(\Psi*k)} $$ + +--- + +### Impulsraum + +$$ \psi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} +\Psi*e^{-i*k*x}*dk}$$ + +$$\textcolor{red}{i*\hbar*\frac{\partial \Psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \Psi}{\partial t} = \frac{p^2}{2*m} *\Psi $$ + +;$$\textcolor{red}{F(i*\hbar*\frac{\partial \Psi}{\partial t})} = F(\circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \Psi}{\partial t}) = F(\frac{p^2}{2*m} *\Psi) $$ + +;$$\textcolor{red}{i*\hbar*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \psi}{\partial t} = \frac{p^2}{2*m} *\psi $$ + +;$$\textcolor{red}{i*\hbar*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \psi}{\partial t} = \frac{(\frac{h*k}{2*\pi})^2}{2*m} *\psi $$ + +;$$\textcolor{red}{i*\hbar*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* \frac{h}{2*\pi} * +\frac{\partial \psi}{\partial t} = \frac{h^2*k^2}{8*\pi^2*m} *\psi $$ + +--- + +### Impulsraum + +$$ \psi = F(\Psi) = \int_{-\infty}^{\infty} \circlearrowleft(-k*x)*\Psi*dx \textcolor{red}{=\int_{-\infty}^{\infty} +\Psi*e^{-i*k*x}*dk}$$ + +$$\textcolor{red}{i*\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree)* +\frac{\partial \psi}{\partial t} = \frac{h*k^2}{4*\pi*m} *\psi $$ + +;$$\psi = \circlearrowleft(\omega * t) * \psi_0 = \textcolor{red}{e^{i*\omega*t}*\psi_0}$$ +;$$\omega = -\frac{h*k^2}{4*\pi*m}$$