%English
%German
$$ a = \frac{d v}{dt} = \frac{F}{m} = -\frac{Dx}{m} = \frac{d^2 x}{d^2 t}$$ ;$$ x = A\cos(\omega t) \Leftrightarrow \frac{d^2 x}{d^2 t} = -\frac{Dx}{m} = -\omega^2 * x $$ ;$$\omega = \sqrt{\frac{D}{m}}$$
$$ x = A\cos(\sqrt{\frac{D}{m}} t) $$ ;$$ v = \frac{d x}{d t} = \omega A \sin(\sqrt{\frac{D}{m}} t)$$ ;$$ E_{kin} = \frac{1}{2} m v^2 = \frac{1}{2} D A^2 \sin^2(\omega t)$$ ;$$ E_{Feder} = \frac{1}{2} D x^2 = \frac{1}{2} D A^2 \cos^2(\omega * t)$$
$$ E_{kin} = \frac{1}{2} m v^2 = \frac{1}{2} D A^2 \sin^2(\omega t)$$
$$ E_{Feder} = \frac{1}{2} D x^2 = \frac{1}{2} D A^2 \cos^2(\omega t)$$
;$$ E{ges} = E{kin} + E_{Feder} = \frac{1}{2} D A^2 $$ $$(\sin^2(\omega t) + \cos^2(\omega t)) = \frac{1}{2} D * A^2 $$
$$ E_{ges} = \frac{1}{2} D A^2 $$
;$$ \Psi = \sqrt{\frac{D}{2}}\begin{pmatrix} x \ \frac{v}{\omega} \end{pmatrix} = \sqrt{\frac{D}{2}}\begin{pmatrix} A\cos(\omega t) \ \frac{\omega A \sin(\omega t)}{\omega}\end{pmatrix}$$ ;$$ \Psi = \sqrt{\frac{D}{2}}\begin{pmatrix} A \ A \end{pmatrix} \odot \circlearrowleft(\omega t) = \sqrt{\frac{D}{2}}A \circlearrowleft(\omega t) $$
$$ \Psi = \sqrt{\frac{D}{2}}\begin{pmatrix} A \ A \end{pmatrix} \odot \circlearrowleft(\omega t) = \sqrt{\frac{D}{2}}A \circlearrowleft(\omega t) $$ $$ \textcolor{red}{\Psi=\sqrt{\frac{D}{2}} A e^{i\omegat}}$$ ;$$|\Psi|^2 = E_{ges} = \frac{DA^2}2 $$
$$ \Psi = A\circlearrowleft(kx - \omega t) \textcolor{red}{= Ae^{i(kx-\omegat)}}$$
$$ \Psi = A\circlearrowleft(kx - \omega t) \textcolor{red}{= Ae^{i(kx-\omegat)}}$$ ;$$ k = \frac{2\pi}{\lambda}, \omega = 2\pif $$ ;$$ \lambda = \frac{h}{p} \Rightarrow k = \frac{2\pip}{h} $$ ;$$ \omega = 2 \pi \frac{v}{\lambda} = \frac{2 \pi v p}{h} $$
$$ \Psi = A\circlearrowleft(kx - \omega t) \textcolor{red}{= Ae^{i(kx-\omegat)}}$$
$$ k = \frac{2\pip}{h}, \omega = \frac{2 \pi v p}{h} $$ ;$$ \Psi = A\circlearrowleft(\frac{2 \pi p}{h}x - \frac{2 \pi v p}{h} t) $$ ;$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-vt)}} $$
$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-vt)}} $$ ;$$ E{ges} = E{kin} + E_{pot} = \frac{p^2}{2m} + V $$ ;$$ E_{ges} \Psi = \frac{p^2}{2m} \Psi + V \Psi $$
$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-v*t)}} $$
$$ E_{ges} \Psi = \frac{p^2}{2m} \Psi + V \Psi $$ ;$$ \frac{\partial \Psi}{\partial x} = \circlearrowleft(90\degree) \frac{2\pip}{h} \Psi \textcolor{red}{= \frac{ip}{\hbar} \Psi} $$ ;$$ p = \circlearrowleft(-90\degree) \frac{h}{2\pi} \frac{\partial \Psi}{\partial x} \textcolor{red}{= -i \hbar * \frac{\partial \Psi}{\partial x}} $$
$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-v*t)}} $$
$$ E_{ges} \Psi = \circlearrowleft(180\degree) \frac{h^2}{8m\pi^2} \frac{\partial^2 \Psi}{\partial^2 x} + V \Psi $$ ;
$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-v*t)}} $$
;$$ E_{ph} = hf = \frac{hv}{\lambda} = \frac{hvp}{h} = vp $$ ;$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) \frac{2\pip v}{h} \Psi$$
$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-v*t)}} $$
$$ \frac{\partial \Psi}{\partial t} = -\circlearrowleft(90\degree) \frac{2\pip v}{h} * \Psi$$
;$$ pv\Psi = -\frac{\partial \Psi}{\partial t} \frac{h}{2\pi*\circlearrowleft(90\degree)}$$
$$ \Psi = A\circlearrowleft(\frac{2\pip}{h}(x - vt)) \textcolor{red}{= Ae^{\frac{ip}{\hbar}(x-v*t)}} $$
$$ pv\Psi = -\frac{\partial \Psi}{\partial t} \frac{h}{2\pi\circlearrowleft(90\degree)}$$ ;$$ E_{ges} \Psi = \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \Psi}{\partial t} \textcolor{red}{ = i\hbar*\frac{\partial \Psi}{\partial t}}$$
$$ V = 0 \forall x \in [0; l], V = \infty \forall x \notin [0; l] $$
;$$ \Psi = 0 \forall x \notin [0, l], \Psi \in \mathbb{C} \forall x \in [0, l] $$ ;$$ \Psi = \Psi_x * \Psi_t $$
$$ \Psi = \Psi_x * \Psi_t $$
;$$E\Psi = -\frac{h^2}{8m\pi^2} \frac{\partial^2 \Psi}{\partial^2 x}$$ ;$$E\Psi_t \Psi_x = -\frac{h^2}{8m\pi^2} \Psi_t \frac{\partial^2 \Psi_x}{\partial^2 x}$$ ;$$E \Psi_x = -\frac{h^2}{8m\pi^2} \frac{\partial^2 \Psi_x}{\partial^2 x}$$
$$ \Psi = A\sin(kx + \alpha_0) * \Psi_t $$
$$E \Psi_x = -\frac{h^2}{8m\pi^2} \frac{\partial^2 \Psi_x}{\partial^2 x}$$ ;$$E \Psi_x = \frac{h^2}{8m\pi^2} k^2 \Psi_x$$ ;$$E = \frac{h^2k^2}{8m*\pi^2}$$
$$ \Psi = A\sin(kx + \alpha_0) * \Psi_t $$
;$$ \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \Psi}{\partial t} = E\Psi = \frac{h^2k^2\Psi_t}{8m\pi^2} \textcolor{red}{ = i\hbar\frac{\partial \Psi}{\partial t}} $$ ;$$ \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \Psi_t}{\partial t} = E\Psi_t = \frac{h^2k^2\Psi_t}{8m\pi^2}\textcolor{red}{ = i\hbar\frac{\partial \Psi_t}{\partial t}} $$
;$$ \Psi_t = \circlearrowleft(\omega t) \textcolor{red}{=e^{i\omegat}} \Rightarrow \omega = -\frac{hk^2}{4\pim} $$
$$ \Psi = A\sin(kx + \alpha_0) \circlearrowleft(-\frac{hk^2}{4\pim} t)$$ ;$$ \Psi(0) = 0 \Rightarrow \alpha_0 = 0 $$ ;$$ \Psi(l) = 0 = A\sin(kxl) \Rightarrow k = \frac{n\pi}{l} \forall n\in \mathbb{N} $$ ;$$ E_n = \frac{h^2n^2}{8ml^2}, \Psi = A\sin(\frac{n\pix}{l}) \circlearrowleft(-\frac{hk^2}{4\pim} t)$$ $$\textcolor{red}{\Psi=A\sin(\frac{n\pix}{l}) e^{-\frac{i\hbark^2t}{2m}}} $$
$$ \Psi = \Psi_1 + \Psi_2, \rho = |\Psi|^2 = |\Psi_1 + \Psi2|^2 $$ ;$ |\Psi|^2 = (\Psi{1x}+\Psi{2x})^2 + (\Psi{1y} + \Psi_{2y})^2 $ ;$ |\Psi|^2 = A^2((\sin(k_1x)\cos(\omega_1t) + \sin(k_2x)\cos(\omega_2t))^2 + ((\sin(k_1x)\sin(\omega_1t) + \sin(k_2x)\sin(\omega_2t))^2$
$$ |\Psi|^2 = A^2(\sin^2(k_1x) + \sin^2(k_2x) + (2\sin(k_1x) sin(k_2x) \cos((\omega_1-\omega_2)*t)$$ ;
$$ |\Psi|^2 = A^2(\sin^2(k_1x) + \sin^2(k_2x) + (2\sin(k_1x) sin(k_2x) \cos((\omega_1-\omega_2)*t)$$
;$$\omega = \omega_1-\omega_2, f = \frac{\omega}{2\pi} = \frac{\omega_1 - \omega_2}{2\pi}$$ ;$$ f = \frac{h}{2\pi4\pim} (k_1^2 - k2^2) $$ ;$$ E{ph} = hf = \frac{h^2}{8\pi^2m} *(k_1^2 - k2^2) $$ ;$$ E{ph} = E_1 - E_2 $$
$$ \Psik = A\circlearrowleft(kx) \textcolor{red}{= Ae^{i(kx)}}$$ ;$$ \Psi = \sum{i=-\infty}^{\infty} a_n \circlearrowleft(k_nx) \textcolor{red}{=\sum_{n=-\infty}^{\infty} a_n e^{ik_n*x}}$$
;$$ \Psi = \int{-\infty}^{\infty} \psi \circlearrowleft(kx)* dk \textcolor{red}{=\int{-\infty}^{\infty} \psi e^{ikx}dk}$$ ;$$ \Psi = \int \int \circlearrowleft(-kx)dx \circlearrowleft(kx)dk \Psi$$ ;$$ \psi = \int \circlearrowleft(-kx)\Psidx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi e^{-ikx}*dk}$$
$$ \Psi = \int{-\infty}^{\infty} \psi \circlearrowleft(kx)* dk \textcolor{red}{=\int{-\infty}^{\infty} \psi e^{ikx}dk}$$
;$$ \frac{\partial \Psi}{\partial k} = \psi \circlearrowleft(kx) \textcolor{red}{= \psi e^{ikx}}$$ ;$$ \psi = \frac{\partial}{\partial k} \circlearrowleft(-kx) \Psi \textcolor{red}{= \frac{\partial }{\partial k} e^{-ikx} \Psi}$$ ;$$ \psi = \circlearrowleft(-90\degree) \circlearrowleft(-kx) \Psi \textcolor{red}{= -ix e^{-ikx} \Psi}$$ ;$$ \int \psi dx = \int \circlearrowleft(-90\degree) \circlearrowleft(-kx) \Psi dx \textcolor{red}{= \int -ix e^{-ikx} \Psi dx}$$ ;$$ F(x\Psi) = \circlearrowleft(90\degree) F(\Psi)\textcolor{red}{= iF(\Psi)} $$
$$ \Psi = \int{-\infty}^{\infty} \psi \circlearrowleft(kx)* dk \textcolor{red}{=\int{-\infty}^{\infty} \psi e^{ikx}dk}$$
$$ \psi = F(\Psi) = \int{-\infty}^{\infty} \circlearrowleft(-kx)\Psi*dx \textcolor{red}{=\int{-\infty}^{\infty} \Psie^{-ikx}dk}$$
$$ \frac{\partial \psi}{\partial k} = \int \frac{\partial}{\partial k}\circlearrowleft(-kx)\Psidx \textcolor{red}{=\int_{-\infty}^{\infty} \Psi\frac{\partial}{\partial k}e^{-ikx}dk} $$ ;$$ \frac{\partial \psi}{\partial k} = \int x\circlearrowleft(-90\degree) \circlearrowleft(-kx)\Psidx \textcolor{red}{=\int_{-\infty}^{\infty} -ix\Psie^{-ikx}dk} $$ ;$$ \frac{\partial \psi}{\partial k} = \circlearrowleft(-90\degree)F^{-1}(\Psik)\textcolor{red}{=-iF^{-1}(\Psik)} $$
$$ \psi = F(\Psi) = \int{-\infty}^{\infty} \circlearrowleft(-kx)\Psi*dx \textcolor{red}{=\int{-\infty}^{\infty} \Psie^{-ikx}dk}$$
$$\textcolor{red}{i\hbar\frac{\partial \Psi}{\partial t}} = \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \Psi}{\partial t} = \frac{p^2}{2m} *\Psi $$
;$$\textcolor{red}{F(i\hbar\frac{\partial \Psi}{\partial t})} = F(\circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \Psi}{\partial t}) = F(\frac{p^2}{2m} *\Psi) $$
;$$\textcolor{red}{i\hbar\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \psi}{\partial t} = \frac{p^2}{2m} *\psi $$
;$$\textcolor{red}{i\hbar\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \psi}{\partial t} = \frac{(\frac{hk}{2\pi})^2}{2m} *\psi $$
;$$\textcolor{red}{i\hbar\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree) \frac{h}{2\pi} \frac{\partial \psi}{\partial t} = \frac{h^2k^2}{8\pi^2m} *\psi $$
$$ \psi = F(\Psi) = \int{-\infty}^{\infty} \circlearrowleft(-kx)\Psi*dx \textcolor{red}{=\int{-\infty}^{\infty} \Psie^{-ikx}dk}$$
$$\textcolor{red}{i\frac{\partial \psi}{\partial t}} = \circlearrowleft(90\degree) \frac{\partial \psi}{\partial t} = \frac{hk^2}{4\pim} \psi $$
;$$\psi = \circlearrowleft(\omega t) \psi_0 = \textcolor{red}{e^{i\omegat}\psi_0}$$ ;$$\omega = -\frac{hk^2}{4\pim}$$